On Certain Plane Curves with Many Integral Points
نویسندگان
چکیده
منابع مشابه
On Certain Plane Curves with Many Integral Points
0. In the course of another investigation we came across a sequence of polynomials Pd ∈ Z[x, y], such that Pd is absolutely irreducible, of degree d, has low height and at least d + 2d + 3 integral solutions to Pd(x, y) = 0. We know of no other family of polynomials of increasing degree with as many integral (or even rational) solutions in terms of their degree, except of course those with infi...
متن کاملAffine Curves with Infinitely Many Integral Points
Let C ⊂ An be an irreducible affine curve of (geometric) genus 0 defined by a finite family of polynomials having integer coefficients. In this note we give a necessary and sufficient condition for C to possess infinitely many integer points, correcting a statement of J. H. Silverman (Theoret. Comput. Sci., 2000). Let C be an irreducible affine curve of (geometric) genus 0 in the affine space A...
متن کاملConstructions of Plane Curves with Many Points
In this paper we investigate some plane curves with many points over Q, finite fields and cyclotomic fields. In a previous paper [4] the first two authors constructed a sequence of absolutely irreducible polynomials Pd(x, y) ∈ Z[x, y] of degree d having low height and many integral solutions to Pd(x, y) = 0. (The definition of these polynomials will be recalled in §4.) Here we construct further...
متن کاملInflection Points on Real Plane Curves Having Many Pseudo-Lines
A pseudo-line of a real plane curve C is a global real branch of C(R) that is not homologically trivial in P(R). A geometrically integral real plane curve C of degree d has at most d− 2 pseudo-lines, provided that C is not a real projective line. Let C be a real plane curve of degree d having exactly d − 2 pseudo-lines. Suppose that the genus of the normalization of C is equal to d− 2. We show ...
متن کاملUncomputably large integral points on algebraic plane curves?
We show that the decidability of an amplification of Hilbert’s Tenth Problem in three variables implies the existence of uncomputably large integral points on certain algebraic curves. We obtain this as a corollary of a new positive complexity result: the Diophantine prefixes ∃∀∃ and ∃∃∀∃ are generically decidable. This means, taking the former prefix as an example, that we give a precise geome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Experimental Mathematics
سال: 1999
ISSN: 1058-6458,1944-950X
DOI: 10.1080/10586458.1999.10504388